
XAPP1292 (v1.0) October 5, 2016 1
www.xilinx.com

Summary
This application note presents a software library (PR TFTP) written in C, that can be used to fetch
partial bitstreams over Ethernet from a Trivial File Transfer Protocol (TFTP) server. A partial
bitstream discovery mechanism is provided for applications that expect their available partial
bitstreams to change over time. Fetching partial bitstreams from a TFTP server can be useful in
designs where partial bitstreams cannot be stored in local read-only memory, or where
centralized control over the availability of partial bitstreams is required.

Three examples are included which make use of a MicroBlaze™ Processor to fetch bitstreams
that are used to partially reconfigure the design. The ARM® processor on a Zynq® device
could be used instead of a MicroBlaze.

More information on Partial Reconfiguration can be found in the Vivado Design Suite: Partial
Reconfiguration User Guide (UG909) [Ref 1]. More information on the TFTP protocol can be
found in RFC 1350 ([Ref 3]).

Introduction
Some partially reconfigurable applications are self-controlling, making their own decisions
about which Reconfigurable Modules to load, and when to load them. These designs commonly
fetch their bitstreams on demand from on-board read-only memory. This is a simple way of
creating a partially reconfigurable design, but can be limited by the relatively small size of
read-only memories. If the combined size of a design's static and partial bitstreams is close to
the size of the local read-only memory, then late changes to the design such as increasing the
size of a Reconfigurable Partition or adding new Reconfigurable Modules could cause the
memory's capacity to be exceeded.

One way to mitigate this risk, yet keep the advantages of a self controlling design, is to store the
bitstreams off-board in some kind of centralized bulk storage and have the application fetch
the bitstreams from there rather than from local read-only memory. The application can fetch
these on demand and pass them straight to the configuration port, or buffer them in local
dynamic memory at startup.

Using a centralized bulk storage scheme for partial bitstreams can offer other advantages, such
as easier management of in-field updates or lower overall storage costs for a system consisting
of multiple identical FPGAs.

Application Note: Vivado Design Suite Partial Reconfiguration Flow

XAPP1292 (v1.0) October 5, 2016

Loading Partial Bitstreams using TFTP
Author: David Robinson

http://www.xilinx.com

Introduction

XAPP1292 (v1.0) October 5, 2016 2
www.xilinx.com

System Requirements
Fetching Partial bitstreams from a TFTP server requires the following system components:

1. A TFTP server and associated bitstream storage that can be reached by the application using
an Ethernet connection.

2. An on-board CPU and memory to run the C software.

3. An Ethernet interface.

4. An interrupt controller.

5. An interface to the configuration port, such as the Partial Reconfiguration Controller IP.

6. The LightWeight IP (LwIP) software library (provided with SDK).

The following blocks may be required depending on the desired behavior:

1. A timer block to allow the TFTP client to detect transmission timeouts. This block can be
avoided if the timeout support is not required.

2. An external memory interface, such as the Memory Interface Generator (MIG) IP, if
bitstreams are to be stored in a local memory before being used.

X-Ref Target - Figure 1

Figure 1: Hardware blocks required for TFTP bitstream fetch

http://www.xilinx.com

Using the PR TFTP Library

XAPP1292 (v1.0) October 5, 2016 3
www.xilinx.com

About TFTP
TFTP is a lockstep file transfer protocol implemented on top of the UDP/IP protocols, and is
commonly used for network booting and firmware transfers to simple network appliances due
to its simplicity and small code size. The file to be transferred is sent in blocks with a maximum
size of 512 bytes, and each block must be acknowledged before another is sent. Blocks are sent
in-order which means they can be passed directly to the configuration port if desired. Optional
extensions to the TFTP protocol have been defined to improve performance (for example, to
increase the maximum block size and to increase the number of consecutive blocks that can be
sent before an acknowledge is required).

The library described in this application note implements a limited TFTP client that can read
files from a server. It does not support any of the optional TFTP extensions. The source code is
made available for this library, enabling the user to add write operations and optional
extensions if required. Refer to RFC 1350 ([Ref 3]) for further details on how TFTP operates.

Using the PR TFTP Library

Downloading the Library
Download the source code for the library and example design files for this application note
from the Xilinx Website. Extract the ZIP file contents to any write-accessible location. This
location is referred to as the <Extract_Dir> in this application note. The source code for the
library is in <Extract_Dir>/common/Sources/sw/pr_tftp_lib.

Including the Library in SDK
To include the PR TFTP library in an SDK project, the following steps are required:

1. Enable the LwIP Library in the Board Support Package.

2. Add the PR TFTP source file
(<Extract_Dir>/common/Sources/sw/pr_tftp_lib/pr_tftp.c) to the project.

3. Add the <Extract_Dir>/common/Sources/sw/pr_tftp_lib directory as an include
path.

Initializing the Library in an Application
The best way to use the PR TFTP library is to start with an LwIP example design that is generated
by SDK. This ensures the CPU, Ethernet interface, interrupt controller, LwIP, etc., are all initialized
correctly for your platform's configuration.

No special integration is required for the PR TFTP library if TFTP timeouts are not required. The
following steps are needed if timeouts are required:

1. Create a variable that holds a timer count value. For example:

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=424957

Using the PR TFTP Library

XAPP1292 (v1.0) October 5, 2016 4
www.xilinx.com

volatile int unsigned PR_TFTP_TimerCount = 0;

The name of this variable is not important, but it needs to be visible from the code that will
request TFTP transfers.

2. Update the timer callback function to increment this variable when the timer interrupt
occurs:

void timer_callback(){
 PR_TFTP_TimerCount++;
}

The exact duration of the timer duration is not important. The file fetch functions in the PR TFTP
library compare the value of the accumulated count value (PR_TFTP_TimerCount in this case)
against a threshold value passed as a parameter to the function call, so any timer duration can
be used as long as the threshold is adjusted accordingly.

For example, if a timeout of 20 seconds is required, a timer duration of 1 second with a
threshold of 20 can be used. However, if the design requires a timer with a duration of 1 ms for
other reasons, the threshold can be set to 20,000 to achieve the same 20 second timeout value.

Using the Library

Fetching a Partial Bitstream

The library has two functions to fetch a Partial Bitstream from a TFTP server. One stores the
bitstream in a memory buffer and the other passes it in chunks to a user defined callback
function. Both of these functions fetch data in network byte order (Big Endian). Depending on
how the partial bitstreams are generated, and the endianness of the system, the received data
may need to be manually converted to host byte order using functions such as ntohl().

For example:

• A Little Endian system that uses BIN files created by write_bitstream will have to convert
the data (see example 3) because the TFTP process converts the Little Endian BIN file to Big
Endian

• A Little Endian system using BIN files created by write_cfgmem -interface SMAPx32 will not
have to convert the data (see examples 1 and 2) because the bitstreams are converted to
Big Endian by write_cfgmem and then reversed by the TFTP process which means they
arrive in Little Endian format

Note: If you encounter difficulties getting partial bitstreams to load correctly then check the endianness
of the received data to ensure it matches the endianness of the file on disk.

The following function is used to fetch a partial bitstream from the TFTP server to local memory:

pr_tftp_err_t PR_TFTP_FetchPartialToMem(
struct netif * LocalNetif,
struct ip_addr ServerIPAddr,
char * Filepath,
char ** ppDataBuffer,
u32 * DataBufferSize,
u32 * DataBufferUsed,

http://www.xilinx.com

Using the PR TFTP Library

XAPP1292 (v1.0) October 5, 2016 5
www.xilinx.com

volatile int unsigned * pTimeoutTickCount,
int unsigned TimoutThreshold,
int unsigned TimeoutRetryAttempts,
pr_tftp_options_s * pOptions);

If this function completes successfully, then the partial bitstream will exist in the memory
pointed to by ppDataBuffer.

The following function is used to fetch a partial bitstream from the TFTP server and pass the
data (one packet at a time) to a user supplied callback function:

pr_tftp_err_t PR_TFTP_FetchPartialToFunction(
struct netif * LocalNetif,
struct ip_addr ServerIPAddr,

Table 1: PR_TFTP_FetchPartialToMem Parameters

Parameter Description

LocalNetif The network interface to use for the TFTP transfer. This needs to be initialised
before use.

ServerIPAddr The IP address of the TFTP server stored in an "ip_addr" structure.

*Filepath The path to the file on the TFTP server. This can be a pointer to a string containing
the file name, or just the file name directly. For example,
"example_1/rp1_rm0.bin" could be passed directly to the function.

**ppDataBuffer A pointer to a pointer to the data buffer that will contain the partial bitstream. A
pointer to a pointer is used because this function can be configured to reallocate
the buffer if it is not big enough for the received file.

*DataBufferSize A pointer to a variable holding the size (in bytes) of the buffer. The function will
update this if the buffer is reallocated.

*DataBufferUsed A pointer to a variable that returns the number of bytes stored. This value can be
used to program the configuration controller.

*pTimeoutTickCount A pointer to a counter incremented in a timer callback. The function will set this
to zero when a timeout window is started.
Note: There is no protection on this variable, so there may be a race between the timer
callback incrementing it and the TFTP fetch function setting it to zero.
This is unimportant as the TFTP timeout period does not have to be very accurate. It is only
needed to handle the cases where there is no TFTP server, or no path to the TFTP server.
If timeout detection is not required, then this variable does not need to be incremented in
a timer callback.

TimeoutThreshold The number of timer timeouts to wait for before declaring a TFTP timeout.

TimeoutRetryAttempts The number times to retry a packet before abandoning the transfer.

*pOptions A pointer to a struct containing some options to control the transfer. For example,
if the function is allowed to reallocate the buffer memory, and if so, how much to
add every time it needs to reallocate it.

If pOptions->ReallocateMemoryIfRequired is set to 1, the function will
allocate memory for the bitstream. If pOptions->
ReallocateMemoryIfRequired is set to 0, then the buffer passed to the
function must be pre-allocated to be large enough to hold the bitstream being
fetched.

See <Extract_Dir>/common/Sources/sw/pr_tftp_lib/pr_tftp.h for
more information.

The function does not modify the contents of this struct.

http://www.xilinx.com

Using the PR TFTP Library

XAPP1292 (v1.0) October 5, 2016 6
www.xilinx.com

char * Filepath,
pr_tftp_recv_data_fn RecvDataCallback,
void * RecvDataCallbackArg,
volatile int unsigned * pTimeoutTickCount,
int unsigned TimeoutThreshold,
int unsigned TimeoutRetryAttempts,
pr_tftp_options_s * pOptions);

Most of these parameters are identical to those described in Table 1. The different parameters
are listed below:

Fetching Information about Available Reconfigurable Modules

Fetching partial bitstreams over Ethernet rather than storing them in read-only memory when
the system is deployed introduces a great deal of flexibility into the design. For example:

• Reconfigurable Modules can be changed during in-field updates.

• Reconfigurable Modules can be added to, or removed from, the design after deployment.

• The Reconfigurable Modules returned by the server can be varied depending on the
environmental or licensing conditions.

This flexibility can introduce some challenges to the application, namely:

1. What Reconfigurable Modules exist for this design?

2. How big are their bitstreams?

3. How should the configuration controller manage their loading and unloading?

The PR TFTP library offers a solution to this by providing a function to fetch a comma separated
value (CSV) file that contains a list of Reconfigurable Modules, and information about each one.
It also provides a function to convert this file into a hierarchical data structure for easy access.

The fields in the CSV file are listed below in order:

1. Reconfigurable Partition ID (16 bits)

2. Reconfigurable Module ID (16 bits)

3. Reset Duration (8 bits)

4. Reset Required (8 bits)

5. Startup Required (8 bits)

Table 2: PR_TFTP_FetchPartialToFunction parameters

Parameter Description

RecvDataCallback The function to call when a data packet is received. The prototype is:
void <function name> (void *Arg, char *Data, int unsigned
NumberOfBytes);

Arg is a user defined variable that is passed to the callback function. Data is a
character array of received data stored in network byte order.

RecvDataCallbackArg A pointer to a variable to pass to the RecvDataCallback function.

http://www.xilinx.com

Using the PR TFTP Library

XAPP1292 (v1.0) October 5, 2016 7
www.xilinx.com

6. Shutdown required (8 bits)

7. Bitstream Size (32 bits)

8. File Name

For example:

Lines beginning with ‘#’ are comments and are ignored by the parser. Empty fields such as ‘,,’
and ‘, ,’, will cause the parser to generate an error.

The CSV file requires two extra fields for the Ultrascale™ devices:

9. Clearing Bitstream Size (32 bits)

10. Clearing File Name

Support for these is enabled if the PR_TFTP_REQUIRES_CLEARING_BITSTREAM pre-processor
symbol is defined. This should be done in applications properties > C/C++ Build > Settings
> MicroBlaze gcc compiler > Symbols.

The information stored in the CSV is specific to the Partial Reconfiguration Controller IP (PG193)
[Ref 6], but it will be generally useful for many applications. The code can be modified to
change the fields in the file if required.

The following function is used to fetch a Reconfigurable Module Information File from the TFTP
server to local memory:

pr_tftp_err_t PR_TFTP_FetchRmInfoToMem (
struct netif * LocalNetif,
struct ip_addr ServerIPAddr,
char * Filepath,
char ** ppDataBuffer,
u32 * DataBufferSize,
u32 * DataBufferUsed,
volatile int unsigned * pTimeoutTickCount,
int unsigned TimoutThreshold,

Table 3: Example of a CSV file

#RP_ID RM_ID Reset
Duration

Reset
Required

Startup
Required

Shutdown
Required BS_SIZE FILE_NAME

0, 0, 0, 3, 0, 0, 375300, example_2/shift_left.bin

0, 1, 1, 3, 0, 0, 375300, example_2/shift_right.bin

X-Ref Target - Figure 2

Figure 2: Enabling support for UltraScale devices

http://www.xilinx.com

Using the PR TFTP Library

XAPP1292 (v1.0) October 5, 2016 8
www.xilinx.com

int unsigned TimeoutRetryAttempts,
pr_tftp_options_s * pOptions);

The parameters are identical to the ones used to fetch a partial bitstream, as shown in Table 1.
If this function completes successfully then the information file will exist in the memory pointed
to by ppDataBuffer.

Note: This function does not parse the file, so it can be used to fetch any ASCII file required by the
application.

Accessing Information about Available Reconfigurable Modules

The following function populates a data structure with the contents of this CSV file:

pr_tftp_err_t PR_TFTP_InitialiseDataStructureFromRmInfoFile(
char * pRmInfoFile,
u32 FileSize,
u16 NumRPs,
pr_tftp_rp_s ** pRPInfoArray);

IMPORTANT: This function will only work if the file is in the format described above. If it is used with
different fields then the function and data structure will have to be changed to match, or replaced with an
alternative.

The following function is provided to free the memory used by this data structure:

pr_tftp_err_t PR_TFTP_FreeDataStructure(
u16 numRPs,
pr_tftp_rp_s ** pRPInfoArray);

Table 4: PR_TFTP_InitializeDataStructureFromRmInfoFile parameters

Parameter Description

*pRmInfoFile A pointer to the memory holding file.

FileSize The size of the file in bytes.

numRPs The number of Reconfigurable Partitions in the design.

**pRPInfoArray A pointer to a pointer to the data structure that will contain information about the
Reconfigurable Modules.

This structure will be allocated and initialized by the function. Ownership of the
memory is passed to the calling function, which needs to deallocate it when it is
no longer needed. A function is provided to deallocate the data structure correctly.
The structure should be declared as:

pr_tftp_rp_s *<variable name>;

where, <variable name> should be replaced by the name you want to give the
variable.

Table 5: PR_TFTP_FreeDataStructure Parameters

Parameter Description

NumRPs The number of Reconfigurable Partitions in the design.

**pRPInfoArray A pointer to a pointer to the data structure containing information about the
Reconfigurable Modules.

http://www.xilinx.com

Using the PR TFTP Library

XAPP1292 (v1.0) October 5, 2016 9
www.xilinx.com

The following code fragment shows the Reconfigurable Module Information File being fetched,
turned into a data structure, and freed:

// ---
// Fetch the Reconfigurable Module Information File
// ---
//
// Setup some transfer options
TransferOptions.ReallocateMemoryIfRequired = 1;
TransferOptions.IncrementAmount = 1024;
RmInfoFileBufferSize = 0;

Err = PR_TFTP_FetchRmInfoToMem(

&LocalNetif , // The network interface to use.
ServerIpAddr , // The TFTP server IP address.
"example_3/rm_info.csv" , // The path & name of the file

 // to fetch.
&pRmInfoFile , // A pointer to a memory buffer

 // to store the file. This will
 // be updated if more memory is
 // allocated.
&RmInfoFileBufferSize , // A pointer to the size of the

 // buffer. This will be updated
 // if more memory is allocated.
&RmInfoFileBufferUsed , // A pointer to a variable to

 // return the number of bytes
 // stored.
&PR_TFTP_TimerCount , // A pointer to a counter

 // incrementedin the timer
 // callback.
PR_TFTP_TIMEOUT_THRESHOLD , // How long to wait on a TFTP

 // packet before timing out.
PR_TFTP_TIMEOUT_RETRY , // How many times to retry a

 // failed packet.
&TransferOptions

);
if (Err != PR_TFTP_ERR_OK) {
 return XST_FAILURE;
}

// ---
// Turn the File into a Data Structure
// ---
//
if (PR_TFTP_InitialiseDataStructureFromRmInfoFile(
 pRmInfoFile, RmInfoFileBufferUsed,
 NumRPs , &pRPInfoArray) != PR_TFTP_ERR_OK) {
 return XST_FAILURE;
}

// Free the buffer that holds the RM Information CSV file
free(pRmInfoFile);

// MAIN APPLICATION GOES HERE

// ---
// Free the data structure containing the RM information
// ---
//
PR_TFTP_FreeDataStructure(NumRPs, &pRPInfoArray);

http://www.xilinx.com

Using the PR TFTP Library

XAPP1292 (v1.0) October 5, 2016 10
www.xilinx.com

The information retrieved from the Reconfigurable Module Information File is stored in an array
of pr_tftp_rp_s structs, each of which contain information about that Reconfigurable Partition,
and an array of pr_tftp_rm_s structs. These hold information about a Reconfigurable Module.

// A struct to hold information about a single Reconfigurable
// Partition
//
typedef struct pr_tftp_rp_s {
 u16 Id;
 u16 NumberOfRMs;
 s32 ActiveRM;
 pr_tftp_rm_s ** pRMInfos;
} pr_tftp_rp_s;

// A struct to hold information about a single Reconfigurable
// Module
//
typedef struct pr_tftp_rm_s {
 u16 Id;
 u8 ResetDuration;
 u8 ResetRequired;
 u8 StartupRequired;
 u8 ShutdownRequired;
 u16 BsIndex;
 u32 BsSize;
 char * pFileName;

 #ifdef PR_TFTP_REQUIRES_CLEARING_BITSTREAM
 u16 ClearingBsIndex;
 u32 ClearingBsSize;
 char * pClearingFileName;
 #endif

} pr_tftp_rm_s;

Table 6: pr_tftp_rp_s struct fields

Field Description

Id The Reconfigurable Partition Identifier

NumberOfRMs The number of Reconfigurable Modules in this Reconfigurable Partition

ActiveRM The ID of the currently loaded Reconfigurable Module. Set to -1 if nothing
is loaded

pRMInfos An array of Reconfigurable Module structs

Table 7: pr_tftp_rm_s struct fields

Field Description

Id The Reconfigurable Module Identifier

ResetDuration The length of reset that this Reconfigurable Module needs. If the Partial
Reconfiguration Controller IP is used, then this is in clock cycles

ResetRequired The type of reset this Reconfigurable Module needs. See the Partial
Reconfiguration Controller Product Guide (PG193) [Ref 6] for encodings, if
the Partial Reconfiguration Controller is being used.

http://www.xilinx.com

Using the PR TFTP Library

XAPP1292 (v1.0) October 5, 2016 11
www.xilinx.com

Note: The ActiveRM fields in the pr_tftp_rp_s structs are set to -1, when the data structure is allocated.
This information is not carried in the Reconfigurable Module Information File. The application software
will have to initialise it based on its knowledge of the system.

For example, the following code can be used with the Partial Reconfiguration Controller IP:

for (Id = 0; Id < XPrc_GetNumberOfVsms(pPrcConfig); Id++){
 // Set the default active RM for each VS
 //
 if (XPrc_GetHasPorRm (pPrcConfig, Id)) {
 pRPInfoArray[Id].ActiveRM = XPrc_GetPorRm(pPrcConfig, Id);
 }
}

The PR TFTP library contains the following functions to access Reconfigurable Partition and
Reconfigurable Module information from the data structure:

pr_tftp_rp_s * PR_TFTP_GetRPInfoByIndex()
pr_tftp_rp_s * PR_TFTP_GetRPInfoByID()
pr_tftp_rm_s * PR_TFTP_GetRMInfoByIndex()
pr_tftp_rm_s * PR_TFTP_GetRMInfoByID()

StartupRequired The type of startup this Reconfigurable Module needs. ee the Partial
Reconfiguration Controller Product Guide (PG193) [Ref 6] for encodings, if
the Partial Reconfiguration Controller is being used.

ShutdownRequired The type of shutdown this Reconfigurable Module needs. ee the Partial
Reconfiguration Controller Product Guide (PG193) [Ref 6] for encodings, if
the Partial Reconfiguration Controller is being used.

BsIndex The index of the bitstream in the Partial Reconfiguration Controller's
Bitstream Information Register Bank that holds information about the
partial bitstream for this Reconfigurable Module. See the Partial
Reconfiguration Controller Product Guide (PG193) [Ref 6] for more
information.

BsSize The size of the partial bitstream (in bytes)

pFileName The full name (including the path) of the partial bitstream on the TFTP server

ClearingBsIndex The index of the bitstream in the Partial Reconfiguration Controller's
Bitstream Information Register Bank that holds information about the
clearing bitstream for this Reconfigurable Module. See the Partial
Reconfiguration Controller Product Guide (PG193) [Ref 6] for more
information.

This field is only enabled if the PR_TFTP_REQUIRES_CLEARING_BITSTREAM
pre-processor symbol is defined

ClearingBsSize The size of the clearing bitstream (in bytes).

This field is only enabled if the PR_TFTP_REQUIRES_CLEARING_BITSTREAM
pre-processor symbol is defined

pClearingFileName The full name (including the path) of the clearing bitstream on the TFTP
server.

This field is only enabled if the PR_TFTP_REQUIRES_CLEARING_BITSTREAM
pre-processor symbol is defined

Table 7: pr_tftp_rm_s struct fields (Cont’d)

Field Description

http://www.xilinx.com

Using the PR TFTP Library

XAPP1292 (v1.0) October 5, 2016 12
www.xilinx.com

If the Reconfigurable Partition information structures and the Reconfigurable Module
information structures are stored in order in the data structure (i.e., if their array indices are the
same as their IDs) then use the "ByIndex" functions as these are faster. If the Reconfigurable
Partition information structures and the Reconfigurable Module information structures are
stored out of order (i.e., if their array indices are not the same as their IDs) then use the "By ID"
functions. These are slower to execute because the appropriate arrays have to be searched to
find the structure with the correct identifier.

If the data structure is created using PR_TFTP_CreateDataStructure then the Reconfigurable
Partition information structures will always be stored in-order. Reconfigurable Module
information structures will be stored in the order they appear in the Reconfigurable Module
Information File.

See <Extract_Dir>/common/Sources/sw/pr_tftp_lib/pr_tftp.c for more
information about these functions.

An example of these functions being used is:

pr_tftp_rp_s *pRPInfoArray;
pr_tftp_rp_s *pRP;
pr_tftp_rm_s *pRM;
// Loop through all Reconfigurable Partitions
//
for (RpId = 0; RpId < NumRPs; RpId++){

 // Get information about the RP
 pRP = PR_TFTP_GetRPInfoByIndex(pRPInfoArray, NumRPs, RpId);

 if (pRP == NULL) {
 return XST_FAILURE;
 }

 // Loop through all Reconfigurable Modules in this RP
 //
 for (RmId = 0; RmId < pRP->NumberOfRMs; RmId++){
 pRM = PR_TFTP_GetRMInfoByID(pRP, RmId);

 if (pRM == NULL) {
 return XST_FAILURE;
 }

 // Access information about the Reconfigurable Module
 //
 pBuffer = malloc (pRM->BsSize);

 // Fetch the bitstream from the server, program the
 // configuration controller, etc.
 }
}

http://www.xilinx.com

Example Designs

XAPP1292 (v1.0) October 5, 2016 13
www.xilinx.com

Example Designs
The PR TFTP library ships with three example designs that are targeted to the KC705 board:

1. In example 1, all the bitstreams are fetched on startup to DDR memory. The Partial
Reconfiguration Controller IP knows how to process each RM, and the software application
knows the names of the bitstream files at compilation time, so no information has to be
fetched describing the Reconfigurable Modules. The received bitstream data does not have
to be converted from the Network Byte Order.

2. In example 2, all the bitstreams are fetched on startup to DDR memory. However, the Partial
Reconfiguration Controller IP does not know how to process each RM, and the software
application does not know the names of the bitstream files, so information has to be
fetched describing the Reconfigurable Modules. The received bitstream data does not have
to be converted from the Network Byte Order.

3. In example 3, bitstreams are only fetched when required and are passed directly to the ICAP
(through the AXI HWICAP IP) using a callback function. The partial bitstreams are not stored
in DDR memory. The received bitstream data has to be converted from Network Byte Order.

Each example has a detailed description in the comments at the start of its main.c file. The
following table gives a summary of each example for comparison:

These designs are based on the Vivado Design Suite Tutorial: Partial Reconfiguration (UG947)
[Ref 9] which has two partitions, each with two Reconfigurable Modules:

In addition to these, the examples use the following major blocks:

• A MicroBlaze

• AXI Ethernet Lite Controller

Table 8: The three example designs compared

Example
Uses RM

Information
File?

Partial Bitstreams
are fetched...

Partial Bitstreams
are fetched to...

Configuration
Mechanism

Data needs to be
converted from

Network Byte Order?

1 No At startup DDR Memory Partial
Reconfiguration
Controller IP

No

2 Yes At startup DDR Memory Partial
Reconfiguration
Controller IP

No

3 Yes When needed A callback function AXI HWICAP IP Yes

Table 9: Reconfiguration Modules

Partition Reconfiguration Modules

Count Count Up, Count Down

Shift Shift Left, Shift Right

http://www.xilinx.com

Example Designs

XAPP1292 (v1.0) October 5, 2016 14
www.xilinx.com

• Interrupt Controller

• Timer

• Memory Interface Generator (MIG)

• Local Memory for CPU

• UART (used for debug)

• The Partial Reconfiguration Controller IP (examples 1 and 2) and the AXI HWICAP IP
(example 3)

Requirements
To run the examples with minimal modifications, the requirements are as follows:

Hardware Requirements:

1. A KC705 board

2. An Ethernet cable

3. A computer running a TFTP server on the same LAN as the KC705 board

Software Requirements:

1. Vivado Design Suite 2016.3 or greater

2. Software Development Kit (SDK)

X-Ref Target - Figure 3

Figure 3: Major Hardware Platform Blocks

http://www.xilinx.com

Example Designs

XAPP1292 (v1.0) October 5, 2016 15
www.xilinx.com

3. A TFTP Server. Free TFTP server software is available online if your system does not already
have one.

Experienced users can modify the examples to support other boards and Xilinx CPUs.

Installation
1. Decompress the ZIP file to an empty directory of your choice. This will be referred to as

<Extract_Dir>.

2. Install a TFTP server on the same network as the KC705 board.

3. Set a TFTP root directory which is referred to as <TFTP_Root>.

4. In <TFTP_Root>, create folders called example_1, example_2, and example_3.

5. Ensure that your firewall is configured to allow TFTP traffic.

Note: The project is split into common files and files specific to each example design. <N> will be used
to show that the example number is needed. For example, if you are working on example 1, and you see
a <Extract_Dir>/example_<N>/Sources path, this resolves to
<Extract_Dir>/example_1/Sources.

Generating the Hardware Platform
Change the working directory to <Extract_Dir>/example_<N> and launch Vivado Design
Suite. Execute the following command at the Vivado command-line:

source run.tcl -notrace

When complete, the partial bitstreams and the Reconfigurable Module Information File need to
be copied to the TFTP server.

For example 1:

• copy <Extract_Dir>/example_1/Partials/*.bin to <TFTP_Root>/example_1

For example 2:

• copy <Extract_Dir>/example_2/Sources/tftp/rm_info.csv to
<TFTP_Root>/example_2

• copy <Extract_Dir>/example_2/Partials/*.bin to <TFTP_Root>/example_2

For example 3:

• copy <Extract_Dir>/example_3/Sources/tftp/rm_info.csv to
<TFTP_Root>/example_3

• copy <Extract_Dir>/example_3/Bitstreams/*.bin to <TFTP_Root>/example_3

Note: Copy these bin files the hardware is re-implemented.

A script called copy_files_to_tftp_server.tcl is provided with each example that will
copy the appropriate files to the TFTP server, but this will only work if a TFTP client is installed

http://www.xilinx.com

Example Designs

XAPP1292 (v1.0) October 5, 2016 16
www.xilinx.com

on your development system and your TFTP server has write access. From Vivado Design Suite,
execute source copy_files_to_tftp_server.tcl

Note: This script has to edited to set the address of the TFTP server.

Generating the Software
Use the following steps to generate the example software:

1. Change to the sw directory in the example

2. Open SDK

3. Create a Hardware Platform Specification using
<Extract_Dir>/<example_N>/SDK/static_bd_wrapper.hdf as the Target
Hardware Specification

4. Create a Board Support Package (BSP) for this platform. Enable the LwIP library in the BSP
settings

5. Create an empty application project. This is called pr_app in the following text, but any
legal name can be used

6. Copy all files from <Extract_Dir>/common/Sources/sw to the pr_app/src
directory

7. Copy all files from <Extract_Dir>/<example_N>/Sources/sw to the pr_app/src
directory. The following Linux commands can be used:

cp -R ../../../../common/Sources/sw/* .
cp ../../../Sources/sw/* .

8. Refresh the project in SDK to see the files in the project

9. Add the following include paths as workspace paths:

/pr_app/src
/pr_app/src/pr_tftp_lib

For example:

The software is ready to be compiled.

X-Ref Target - Figure 4

Figure 4: Add Directory Path

http://www.xilinx.com

Example Designs

XAPP1292 (v1.0) October 5, 2016 17
www.xilinx.com

Configuring the Software
For each example, edit <Extract_Dir>/example_<N>/sw/pr_app/src/main.c and set
the following values correctly:

unsigned char MacEthernetAddress[] = { 0x00, 0x0a, 0x35, 0x02, 0xAE, 0xE3 };
IP4_ADDR(&BoardIpAddr , 149, 199, 131, 16); // The board's IP address
IP4_ADDR(&Netmask , 255, 255, 255, 0); // The Netmask
IP4_ADDR(&GatewayIpAddr , 149, 199, 131, 254); // The Gateway IP address
IP4_ADDR(&ServerIpAddr , 149, 199, 131, 173); // The TFTP server's IP address

Note:
The MAC address should be printed on a sticker on your KC705 board.
The BoardIpAddress needs to be assigned to you by your local IT team.
The Netmask and GatewayIpAddr will be given to you by your local IT team.
The ServerIpAddr is the address where your TFTP server is running.

Running the Design
To run the application:

1. Ensure your board is connected to the same network as your TFTP server using an Ethernet
cable.

2. Ensure your board is connected to an SDK development machine using a JTAG to USB cable.
This will allow SDK to download the static bitstream and debug the application.

3. The example designs use the UART output to send debug information. To view this on
Windows based hardware you need a serial to USB cable and the Silicon Labs drivers that
are available on the Silicon Labs website for CP210x USB-to-UART Bridge VCP Drivers
[Ref 8]. A terminal emulation application is also required. Tera Term is freely available for this
[Ref 7]. For Linux system, consult your local IT department.

4. Apply power to your board.

5. Start a Vivado HW Server instance on the machine with the board attached to allow SDK to
communicate with the board.

6. Use SDK to program the FPGA. Select the pr_app.elf file as the Software Configuration.

7. Start the TFTP server and make sure it has the latest bitstreams.

8. Run the application from SDK.

http://www.xilinx.com

Reference Design

XAPP1292 (v1.0) October 5, 2016 18
www.xilinx.com

Reference Design
Download the reference design files for this application note from the Xilinx website.

References
1. Vivado Design Suite User Guide: Partial Reconfiguration (UG909)

2. Description of Trivial File Transfer Protocol -
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol

3. RFC1350, The TFTP Protocol (Revision 2) https://tools.ietf.org/html/rfc1350

4. LightWeight IP (LwIP) Application Examples v5.1 Application Note (XAPP1026)

5. Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940)

6. Partial Reconfiguration Controller Product Guide (PG193)

7. The Tera Term Home Page (English)

8. The Silicon Labs Website for CP210x USB-to-UART Bridge VCP Drivers

9. Vivado Design Suite Tutorial: Partial Reconfiguration (UG947)

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.3;d=sw_manuals/xilinx2016_2/ug909-vivado-partial-reconfiguration.pdf
https://tools.ietf.org/html/rfc1350
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1026.pdf
https://secure.xilinx.com/webreg/clickthrough.do?cid=######
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug940-vivado-tutorial-embedded-design.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=prc;v=v1_0;d=pg193-partial-reconfiguration-controller.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=sw_manuals/xilinx2016_2/ug947-vivado-partial-reconfiguration-tutorial.pdf
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
http://ttssh2.osdn.jp/index.html.en
http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx
https://tools.ietf.org/html/rfc1350
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=sw_manuals/xilinx2016_2/ug940-vivado-tutorial-embedded-design.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1026.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.3;d=sw_manuals/xilinx2016_2/ug909-vivado-partial-reconfiguration.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=sw_manuals/xilinx2016_2/ug909-vivado-partial-reconfiguration.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=sw_manuals/xilinx2016_2/ug909-vivado-partial-reconfiguration.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug909-vivado-partial-reconfiguration.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug940-vivado-tutorial-embedded-design.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://secure.xilinx.com/webreg/clickthrough.do?cid=424957

Revision History

XAPP1292 (v1.0) October 5, 2016 19
www.xilinx.com

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in
contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result
of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the
Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which
can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license
issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of
Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY
CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN").
CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH
SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF
CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.
© Copyright 2016 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.

Date Version Revision

10/05/2016 1.0 Initial Xilinx release.

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com

	Loading Partial Bitstreams using TFTP
	Summary
	Introduction
	System Requirements
	About TFTP

	Using the PR TFTP Library
	Downloading the Library
	Including the Library in SDK
	Initializing the Library in an Application
	Using the Library
	Fetching a Partial Bitstream
	Fetching Information about Available Reconfigurable Modules
	Accessing Information about Available Reconfigurable Modules

	Example Designs
	Requirements
	Installation
	Generating the Hardware Platform
	Generating the Software
	Configuring the Software
	Running the Design

	Reference Design
	References
	Revision History
	Please Read: Important Legal Notices

