
Demonstration Workbook JTAG to AXI Master Core Demo Script

 www.amd.com 1

 © Copyright 2025 Advanced Micro Devices, Inc.

JTAG to AXI Master Core Demo Script

Introduction

This demonstration introduces the JTAG to AXI debug core that can generate AXI transactions
and drive internal AXI signals in a design at run time. The demonstration also highlights the Tcl
commands used at runtime interaction with this core in the Vivado™ hardware manager
environment.

Preparation:

• Necessary files are located in the following directory:

$TRAINING_PATH/jtag2axi/demo/ZCU104

• Required hardware: ZCU104 Evaluation Platform

• Required software: Vivado Design Suite (any edition)

JTAG to AXI Master Debug IP Transactions

Action with Description Point of Emphasis and Key Takeaway

• Launch the Vivado Design Suite.

• Unzip the project using the Tcl Console:

exec unzip

$::env(TRAINING_PATH)/jtag2axi/d

emo/ZCU104.zip -d

$::env(TRAINING_PATH)/jtag2axi/d

emo/ZCU104

• Open the project jtag2axi.xpr from the

following directory using the Vivado IDE:

$TRAINING_PATH/jtag2axi/demo/ZCU

104

• The Open Project selection allows the
designer to access existing projects.

• Notice that the design is empty.

• You will create an IPI block design that has
two peripherals: block RAM and GPIO
(which connects to the LEDs on the board).

There are several ways to create a block
design:

• One way is to use a Tcl script to generate
the required block design.

JTAG to AXI Master Core Demo Script Demonstration Workbook

2 www.amd.com

 © Copyright 2025 Advanced Micro Devices, Inc.

Action with Description Point of Emphasis and Key Takeaway

• Enter the following command in the Tcl
Console of the Vivado IDE to generate the
required block design for this
demonstration:

source

/home/amd/training/jtag2axi/demo/Z

CU104/Create_jtag2axi_block-design

.tcl

• Right-click and select Regenerate Layout.

• The Tcl script is used for the interest of
time in this demonstration.

• Once the Tcl script finishes, you should be
able to see the IPI block design as shown
below.

• View the Address Editor tab.

• Note that the Vivado Design Suite assigns
addresses to the PL slave peripherals:

• AXI block RAM controller, which is
connected to the dual-port BRAM block

• AXI GPIO-LEDs_linear, which drives
the board LEDs

• The Address Editor tab shows the base
and high address along with the size of
each peripheral. The base address of the
block RAM controller is 0xC0000000 and
the AXI GPIO is 0x40000000.

• View the IPI block design and quickly
summarize the position of the JTAG to AXI
core.

• The JTAG to AXI master core is an
AXI-based embedded system that
connects to the slave interface of the AXI
interconnect that has slave peripherals.

• The JTAG to AXI master core is placed
before the AXI interconnect as a master to
make data transactions to block RAM and
drive the LEDs on the board.

• Validate and save the updated design.

• Select Tools > Validate Design to
scan for any errors and critical
warnings. Resolve any issues.

• Select File > Save Block Design.

• The updated IPI block design needs to be
validated for any errors before you save it.

Demonstration Workbook JTAG to AXI Master Core Demo Script

 www.amd.com 3

 © Copyright 2025 Advanced Micro Devices, Inc.

Action with Description Point of Emphasis and Key Takeaway

• Create a HDL top-level wrapper for the
block design by letting the Vivado Design
Suite manage the wrapper and
auto-update.

• The HDL top-level wrapper instantiates the
final IPI block design with port mapping.

• A top-level source file is required; it can be
generated by the Vivado Design Suite.

• Now that the HDL wrapper is generated, it
is time to implement the design and
generate the bitstream.

• However, in the interest of time, the
bitstream has already been generated and
is available in the project directory.

• Set up and connect the board or verify that
this has properly been done before turning
on the power.

• All the connections are made to the
board itself.

• Power on the board.

• Powering up the board allows you to
launch the Vivado hardware manager.

• Click Program and Debug > Open
Hardware Manager from the Flow
Navigator to establish a connection to the
board.

• Click Open target > Auto Connect to
connect to the target board automatically
with the default settings.

• A hardware session is the utility of the
Vivado Design Suite that enables the
monitoring of debug cores that were added
to a design.

JTAG to AXI Master Core Demo Script Demonstration Workbook

4 www.amd.com

 © Copyright 2025 Advanced Micro Devices, Inc.

Action with Description Point of Emphasis and Key Takeaway

Now that connection to the board is
established, your first task is to typically
download a bitstream to your board.

• Right-click the xczu7_0 device and select
Program Device.

• Select the bitstream
(jtag2axi_wrapper.bit) and probe
(jtag2axi_wrapper.ltx) files from the
project directory.

• A bitstream programming file is used to
download to your hardware device,
whereas debug probe files contain details
of the probing signals for cores like VIO
and ILA.

• You can ignore the debug.ltx probe file in
this case as you are not monitoring any
internal design signals.

• Note: The JTAG to AXI master core that
you added to the design appears in the
Hardware window under the target device.
If you do not see the JTAG to AXI core
appear, right-click the device and select
Refresh Device. This re-scans the FPGA
device and refreshes the Hardware
window.

The hardware is now programmed, and you
can see the AXI debug core in the device tree.

• Select hw_axi_1(AXI) and explore the AXI
core properties.

• The core is AXI4 Full type, which is a
master to the AXI4 Lite peripherals on the
other side of the interconnect.

• Review the properties of JTAG to AXI
master core in the AXI Core Properties
window.

• The JTAG to AXI master debug core is a
customizable core that can generate the
AXI transactions and drive the AXI signals
internal to an FPGA at run time.

• The core supports all memory-mapped AXI
and AXI-Lite interfaces and can support a
32-bit or 64-bit wide data interface.

• The JTAG to AXI master core can only be
communicated with using Tcl Console
commands.

• You can create and run AXI read and write
transactions using these Tcl Console
commands.

Demonstration Workbook JTAG to AXI Master Core Demo Script

 www.amd.com 5

 © Copyright 2025 Advanced Micro Devices, Inc.

Action with Description Point of Emphasis and Key Takeaway

• Reset the JTAG to AXI master debug core.

• Before creating and issuing
transactions, it is important to reset the
JTAG to AXI master core using the
following Tcl command:

reset_hw_axi [get_hw_axis

hw_axi_1]

• The AXI side of the logic is reset when the
JTAG-to-AXI master core samples this as
low on the rising edge of the input clock.
You need to use the reset_hw_axi Tcl

command to reset the core.

JTAG to AXI Master Core Demo Script Demonstration Workbook

6 www.amd.com

 © Copyright 2025 Advanced Micro Devices, Inc.

Action with Description Point of Emphasis and Key Takeaway

• Create a write transaction into the block
memory in the design.

• The following Tcl command creates a
4-word AXI write burst transaction to
the memory controller base address:

create_hw_axi_txn write_txn

[get_hw_axis hw_axi_1]

-address c0000000 -data

{44444444_33333333_22222222_1

1111111} -len 4 -type write

where:

▪ write_txn is the user-defined name
of the transaction.

▪ [get_hw_axis hw_axi_1] returns the
hw_axi_1 object.

▪ -address c0000000 is the base
address of bram controller.

▪ -data
{44444444_33333333_22222222_1
1111111}

The -data direction is LSB to the left
(i.e., address 0) and MSB to the right
(i.e., address 3).

▪ -len 4 sets the AXI burst length to
four words.

• The 4-word AXI burst transaction writes to
the locations of the block RAM starting
from the base address.

• Run the write transaction that was just
created by using the run_hw_axi

command:

run_hw_axi [get_hw_axi_txns

write_txn]

• After creating the transaction in the above
step, you ran it as a write transaction by
using the run_hw_axi command.

• The data
44444444_33333333_22222222_1111111
1 is now written to the memory.

Demonstration Workbook JTAG to AXI Master Core Demo Script

 www.amd.com 7

 © Copyright 2025 Advanced Micro Devices, Inc.

Action with Description Point of Emphasis and Key Takeaway

• Create a read transaction to the block
memory in the design.

• The following Tcl command creates a
4-word AXI read burst transaction from
the memory controller base address
that was written in the previous steps:

create_hw_axi_txn read_txn

[get_hw_axis hw_axi_1]

-address c0000000 -len 4 -type

read

where:

▪ read_txn is the user-defined name
of the transaction.

▪ [get_hw_axis hw_axi_1] returns the
hw_axi_1 object.

▪ -address c0000000 is the base
address of bram controller.

▪ -len 4 sets the AXI burst length to
fourwords.

• The 4-word AXI burst transaction reads
from the locations of the block RAM
starting from the base address.

• Run the read transaction that was just
created by using the run_hw_axi

command:

run_hw_axi [get_hw_axi_txns

read_txn]

• After creating the transaction in the above
step, you ran it as a read transaction by
using the run_hw_axi command.

• The data
44444444333333332222222211111111 is
now read back from the memory.

JTAG to AXI Master Core Demo Script Demonstration Workbook

8 www.amd.com

 © Copyright 2025 Advanced Micro Devices, Inc.

Action with Description Point of Emphasis and Key Takeaway

• Create a write data transaction on the
board user 8-bit LEDs that are enabled in
the design.

• The following Tcl command creates a
one-word AXI write transaction to the
AXI GPIO-LEDs base address:

create_hw_axi_txn wr_txn

[get_hw_axis hw_axi_1]

-address 40000000 -data

{000000aa} -len 1 -type write

• The 1-word AXI data transaction writes to
the base address of the user LEDs.

• Run the write transaction on user LEDs
that was just created by using the
run_hw_axi command:

run_hw_axi [get_hw_axi_txns

wr_txn]

• After creating the transaction in the above
step, you ran it as a write transaction by
using the run_hw_axi command.

• The written data "000000aa" will be
displayed on the board user LEDs.

• Close the hardware manager and exit the
Vivado Design Suite.

• Exit the GUI and applications.

• Power off the evaluation board.

Summary

This demonstration showed how to add and integrate the JTAG to AXI debug IP core available
to an embedded or non-embedded system and how to perform essential connections to the AXI
peripherals in the IPI block design.

Launching the hardware server to open, set up a JTAG connection, and program the device
was also shown. The use of the Vivado logic analyzer Tcl Console interface for run-time
interaction with the target hardware was demonstrated as well. Note that the JTAG to AXI
master debug core can only be communicated via Tcl commands.

