Demonstration Workbook JTAG to AXI Master Core Demo Script

JTAG to AXI Master Core Demo Script

Introduction

This demonstration introduces the JTAG to AXI debug core that can generate AXI transactions
and drive internal AXI signals in a design at run time. The demonstration also highlights the Tcl
commands used at runtime interaction with this core in the Vivado™ hardware manager
environment.

Preparation:

o Necessary files are located in the following directory:
STRAINING PATH/jtag2axi/demo/zZCU104

e Required hardware: ZCU104 Evaluation Platform

e Required software: Vivado Design Suite (any edition)

JTAG to AXI Master Debug IP Transactions

Action with Description Point of Emphasis and Key Takeaway

e Launch the Vivado Design Suite.

e Unzip the project using the Tcl Console: e The Open Project selection allows the

exec unzip designer to access existing projects.

$::env (TRAINING PATH)/jtag2axi/d
emo/7ZCU104.zip -d

$::env (TRAINING PATH)/jtag2axi/d
emo/ZCU104

e Open the project jtag2axi . xpr from the
following directory using the Vivado IDE:

STRAINING PATH/jtag2axi/demo/ZCU

104

e Notice that the design is empty. There are several ways to create a block

e You will create an IPI block design that has design:
two peripherals: block RAM and GPIO e One way is to use a Tcl script to generate
(which connects to the LEDs on the board). the required block design.

AMDI www.amd.com 1

together we advance_ © Copyright 2025 Advanced Micro Devices, Inc.

JTAG to AXI Master Core Demo Script

Demonstration Workbook

Action with Description

Point of Emphasis and Key Takeaway

o Enter the following command in the Tcl
Console of the Vivado IDE to generate the
required block design for this
demonstration:

source
/home/amd/training/jtag2axi/demo/ 2
CUl04/Create jtag2axi block-design
.tcl

e Right-click and select Regenerate Layout.

The Tcl script is used for the interest of
time in this demonstration.

Once the Tcl script finishes, you should be
able to see the IPI block design as shown
below.

e View the Address Editor tab.

e Note that the Vivado Design Suite assigns
addresses to the PL slave peripherals:

e AXI block RAM controller, which is
connected to the dual-port BRAM block

e AXI GPIO-LEDs_linear, which drives
the board LEDs

The Address Editor tab shows the base
and high address along with the size of
each peripheral. The base address of the
block RAM controller is 0xC0000000 and
the AXI GPIO is 0x40000000.

e View the IPI block design and quickly
summarize the position of the JTAG to AXI
core.

The JTAG to AXI master core is an
AXl-based embedded system that
connects to the slave interface of the AXI
interconnect that has slave peripherals.

The JTAG to AXI master core is placed
before the AXI interconnect as a master to
make data transactions to block RAM and
drive the LEDs on the board.

o Validate and save the updated design.

e Select Tools > Validate Design to
scan for any errors and critical
warnings. Resolve any issues.

e Select File > Save Block Design.

The updated IPI block design needs to be
validated for any errors before you save it.

www.amd.com

AMDA1

© Copyright 2025 Advanced Micro Devices, Inc. together we advance_

Demonstration Workbook

JTAG to AXI Master Core Demo Script

Action with Description

Point of Emphasis and Key Takeaway

e Create a HDL top-level wrapper for the
block design by letting the Vivado Design
Suite manage the wrapper and
auto-update.

The HDL top-level wrapper instantiates the
final IPI block design with port mapping.

A top-level source file is required; it can be

generated by the Vivado Design Suite.

Sources ¥ Design Signals Board ?_00 Diagram
Q = = + £ Q =
~ Design Sources (1) Cell
(> B bd) (1 ~ IF
5 Constraints ,' Source Node Properties..
L J
~ [simulation gburces (1) & OpenFile
. [}
» sim_"1&1)
~ . Create HDL Wrapper... '

» L
2auns® View Instantiation Template

Generate Qutput Products. .
Reset Qutput Products...

S B PNl P g Yl

Now that the HDL wrapper is generated, it
is time to implement the design and
generate the bitstream.

However, in the interest of time, the
bitstream has already been generated and
is available in the project directory.

Set up and connect the board or verify that
this has properly been done before turning
on the power.

e All the connections are made to the
board itself.

e Power on the board.

Powering up the board allows you to
launch the Vivado hardware manager.

Click Program and Debug > Open
Hardware Manager from the Flow
Navigator to establish a connection to the
board.

Click Open target > Auto Connect to
connect to the target board automatically
with the default settings.

A hardware session is the utility of the
Vivado Design Suite that enables the
monitoring of debug cores that were added
to a design.

AMDA

together we advance_

www.amd.com 3
© Copyright 2025 Advanced Micro Devices, Inc.

JTAG to AXI Master Core Demo Script

Demonstration Workbook

Action with Description

Point of Emphasis and Key Takeaway

Now that connection to the board is
established, your first task is to typically
download a bitstream to your board.

Right-click the xczu7_0 device and select
Program Device.

Select the bitstream
(jtag2axi_wrapper.bit) and probe
(itag2axi_wrapper.ltx) files from the
project directory.

A bitstream programming file is used to
download to your hardware device,
whereas debug probe files contain details
of the probing signals for cores like VIO
and ILA.

You can ignore the debug.ltx probe file in
this case as you are not monitoring any
internal design signals.

Note: The JTAG to AXI master core that
you added to the design appears in the
Hardware window under the target device.
If you do not see the JTAG to AXI core
appear, right-click the device and select
Refresh Device. This re-scans the FPGA
device and refreshes the Hardware
window.

The hardware is now programmed, and you
can see the AXI debug core in the device tree.

Select hw_axi_1(AXI) and explore the AXI
core properties.

The core is AXI4 Full type, which is a
master to the AXI4 Lite peripherals on the
other side of the interconnect.

Review the properties of JTAG to AXI
master core in the AXI Core Properties
window.

The JTAG to AXI master debug core is a
customizable core that can generate the
AXI transactions and drive the AXI signals
internal to an FPGA at run time.

The core supports all memory-mapped AXI
and AXI-Lite interfaces and can support a
32-bit or 64-bit wide data interface.

The JTAG to AXI master core can only be
communicated with using Tcl Console
commands.

You can create and run AXI read and write
transactions using these Tcl Console
commands.

www.amd.com
© Copyright 2025 Advanced Micro Devices, Inc.

AMDA1

together we advance_

Demonstration Workbook

JTAG to AXI Master Core Demo Script

Action with Description

Point of Emphasis and Key Takeaway

Hardware ? 0@ X
a = £ o
Name Status
¥ localhost Connected
B o xilin_tef/Xilink/34760A | Open
& xczu7 0 (2 Programmed
SysMon [Systern Mc
hw_axi_1 (Base_Zyr
]
@ arm_dap_1 (1 :N,‘A
Syshan og
=
»
0
AXI Core Properties . ?2_00
g
e _ai_1 o - o
“‘
Qa = @ o »

o F
AXI_ADDR_WIDTH
AXI_DATA_WIDTH
AXI_ID_WIDTH
BURST TYPE FIXED SUP
BURST_TYPE_INCR_SUPF
BURST_TYPE_WRAP_SUF

v

v

o

CELL_NAME Base_Zyng MPSoC_ifjtag_a
CLASS hw_axi
CORE_UUID 13222F8D6CEOSDB282C80:
NAME hw_axi_1 "
Genera Properties
e Reset the JTAG to AXI master debug core. |e The AXI side of the logic is reset when the
+Beorecreating and ssing
transactions, it is important to reset the You need to usge the? N hp) Tél
JTAG to AXI master core using the reset_hw_axi
following Tcl command: command to reset the core.
reset hw axi [get hw axis
hw axi 1]
AMDI www.amd.com
together we advance_ © Copyright 2025 Advanced Micro Devices, Inc.

JTAG to AXI Master Core Demo Script

Demonstration Workbook

Action with Description

Point of Emphasis and Key Takeaway

Create a write transaction into the block
memory in the design.

e The following Tcl command creates a
4-word AXI write burst transaction to
the memory controller base address:

create hw axi txn write txn
[get hw axis hw _axi 1]
—address c0000000 -data
{44444444 33333333 22222222 1
1111111} -len 4 -type write

where:

= write_txn is the user-defined name
of the transaction.

= [get_hw_axis hw_axi_1] returns the
hw_axi_1 object.

= -address c0000000 is the base
address of bram controller.

= -data

{44444444 33333333_22222222_1
1111111}

The -data direction is LSB to the left
(i.e., address 0) and MSB to the right
(i.e., address 3).

= -len 4 sets the AXI burst length to
four words.

The 4-word AXI burst transaction writes to
the locations of the block RAM starting
from the base address.

Run the write transaction that was just
created by using the run_hw_axi
command:

run_hw axi
write txn]

[get _hw axi txns

After creating the transaction in the above
step, you ran it as a write transaction by
using the run hw axi command.

The data
44444444 33333333 22222222 1111111
1 is now written to the memory.

Tcl Console

Qa x = Il B E @
j program hw_devices: Time (3): cpu = 00:00:07
refresh_hw_device [lindex [get_hw_devices xc7k325t_0] 0]

; elapsed = 00:00:07 . Memory (MB): peak = 1977.719 ;

: INEQ: [Tabrools 27-2302] Device xcik3asc (JTRC device dndex = 0) is programmed with a design That has 1 _JTRc IXT corefs).

ffreset hw axi [get hw axis hw axi 1]

write_txn
run_hw_axi [get_hw_axi_tuns write_txn]

\ INFO: [Labtooclstcl 44-481] WRITE DATA is: 44444444 33333333_22222222

gain = 0.000 o~

www.amd.com
© Copyright 2025 Advanced Micro Devices, Inc.

AMDA

together we advance_

Demonstration Workbook

JTAG to AXI Master Core Demo Script

Action with Description

Point of Emphasis and Key Takeaway

e Create aread transaction to the block
memory in the design.

e The following Tcl command creates a
4-word AXI read burst transaction from
the memory controller base address
that was written in the previous steps:

create hw axi txn read txn
[get hw axis hw_axi 1]
—address c0000000 -len 4 -type
read

where:
= read_txn is the user-defined name
of the transaction.

= [get_hw_axis hw_axi_1] returns the
hw_axi_1 object.

= -address c0000000 is the base
address of bram controller.

= -len 4 sets the AXI burst length to
fourwords.

The 4-word AXI burst transaction reads
from the locations of the block RAM
starting from the base address.

e Run the read transaction that was just
created by using the run_hw axi
command:
run _hw axi [get hw axi txns
read txn]

After creating the transaction in the above
step, you ran it as a read transaction by
using the run hw axi command.

The data
44444444333333332222222211111111 is
now read back from the memory.

: run_hw axi [get_hw axi_ txns read txn]

Tcl Console ? 0 &l X
- e ——
Qa = £ Il B E o
: create_hw_axi txn read txn [get_hw_axis hw_axi 1] -address c0000000 -len 4 -type read -~
read_txn

INFO: [Labtoolstcl 44-481] BEAD DATA isz: 44444444333333332222222211111111 m

1 kd
AMDI www.amd.com 7
together we advance_ © Copyright 2025 Advanced Micro Devices, Inc.

JTAG to AXI Master Core Demo Script

Demonstration Workbook

Action with Description

Point of Emphasis and Key Takeaway

e Create a write data transaction on the
board user 8-bit LEDs that are enabled in
the design.

e The following Tcl command creates a
one-word AXI| write transaction to the
AX| GPIO-LEDs base address:

create hw axi txn wr txn
[get hw axis hw_axi 1]
—address 40000000 -data

{000000aa} -len 1 -type write

The 1-word AXI data transaction writes to
the base address of the user LEDs.

e Run the write transaction on user LEDs
that was just created by using the
run_hw_axi command:

run_hw axi [get hw axi txns
wr_txn]

After creating the transaction in the above
step, you ran it as a write transaction by
using the run hw axi command.

The written data "000000aa" will be
displayed on the board user LEDs.

Tcl Console

a =z = 1 B E @

7?2 - 0a&a X

Wr_tXn
run_hw_axi [get_hw_axi txns wr_txn]
INFO: [Labtoolstcl 44-431] WRITE DATR is: 000000za

e Close the hardware manager and exit the
Vivado Design Suite.

Exit the GUI and applications.

o Power off the evaluation board.

Summary

This demonstration showed how to add and integrate the JTAG to AXI debug IP core available
to an embedded or non-embedded system and how to perform essential connections to the AXI

peripherals in the IPI block design.

Launching the hardware server to open, set up a JTAG connection, and program the device
was also shown. The use of the Vivado logic analyzer Tcl Console interface for run-time
interaction with the target hardware was demonstrated as well. Note that the JTAG to AXI
master debug core can only be communicated via Tcl commands.

8 www.amd.com
© Copyright 2025 Advanced Micro Devices, Inc.

AMDA

together we advance_

