Today’s IT organizations are being asked to perform a nearly-impossible juggling act. Deliver more applications but at lower cost. Increase performance but reduce the number of systems to manage. Buy the best server for the job but maintain the flexibility to change which operating systems you support at a moment’s notice. Support Microsoft Windows today, the Solaris™ Operating System tomorrow, and keep your Linux skills well-honed. Fortunately, Sun has a solution that helps increase flexibility and reduce risk. With Sun Fire™ x64 servers powered with AMD Opteron™ processors, you can choose which enterprise operating system to run today — Solaris, Windows, Linux — and change your mind tomorrow. But consolidate multiple applications and different operating systems onto the same server? It’s an innovative way to do more with less, and it’s straightforward with virtualization technologies available from Sun and its partners (Figure 1).

Doing More with Less
Almost every enterprise depends on its IT organization to support applications that make it run. But in today’s economy, almost every business is cutting costs to the bone in order to deliver products and services more cost-effectively and efficiently than the competition. This business climate translates into pressure for IT organizations to do the same.

IT organizations are tasked to cut cost and complexity while delivering high-performance, high-availability, business-critical applications that perform at lightning speed. These demands translate into a unique set of challenges for IT organizations:

- Reducing capital expenses by using a smaller number of larger, powerful, more cost-effective servers
- Reducing operating expenses by managing a smaller number of servers and by supporting a small, core set of enterprise operating systems
- Increasing server utilization by deploying multiple applications onto a single server, sharing resources and reducing the number of wasted CPU cycles
- Optimizing flexibility and protecting investments by choosing servers that can be used

Figure 1: Consolidation through virtualization allows different applications to run in secure, isolated environments on a single server platform — like Sun Fire x64 servers
to support one application and operating system today and support a different combination tomorrow

- Raising availability levels with local replication and reliable servers equipped with redundant components
- Provide for continued operations by distributing applications geographically

Virtualization and Consolidation

In the 1990s, a key strategy in designing Internet architectures was to decompose applications into separate components. Each component was replicated for availability, hosted in its own security domain (usually a dedicated server), and tuned for optimal performance. This resulted in a large number of 1U and larger servers deployed across datacenter environments, each contributing to inefficiency:

- Each server was sized to handle the maximum expected workload, leaving its CPU (and other resources) underutilized most of the time.
- Each 1U server required its own infrastructure including power supplies and cooling fans, resulting in higher initial capital costs and ongoing operational costs than with larger servers offering better economies of scale.
- Each server contributed to the number of systems to maintain, licenses to track, and operating system instances to support.

Virtualization and consolidation techniques have evolved since the 1990s to the point where today they can be used together to support Internet architectures that are logically decomposed but which physically share the same infrastructure. This helps IT organizations achieve the same security, availability, and performance benefits of decomposed architectures while realizing a whole new level of efficiency. Virtualization and consolidation are two key tools that help IT organizations do more with less.

Consolidation

Consolidation is the strategy of moving multiple applications from separate servers onto a single, shared server. This technique is used by IT organizations wishing to leverage the efficiency and cost effectiveness of larger, more powerful servers.

In some cases, multiple applications can be consolidated onto a single application instance. For example, one database management system can support different applications through a set of disjoint tablespaces. In most cases, however, each application targeted to share a single server requires its own application instance. For example, separate Web server instances are needed to support development, staging, and production Web sites so that developers can change the environment without affecting the business application.

Virtualization and Partitioning

Virtualization and partitioning are the means by which multiple applications or application instances can share the same platform and resources without interfering with each other. For example, virtualization allows multiple Apache Web server instances on the same server each to have their own httpd.conf configuration file, each in a separate, virtualized environment. Virtualization allows applications to access the resources they are authorized to use — and not exceed the boundaries of their security domain. Virtualization also allows IT organizations to manage resources like CPU, memory, and network bandwidth for greater utilization, and dynamically adjust resource allocation. This helps IT organizations with the flexibility they need to respond quickly to rapidly-changing workloads.

Virtualization begins with a single environment and creates the illusion of multiple ones. Virtualization can take place at several levels, but regardless of level the effect is that the application or the operating system itself has the illusion that it ‘owns’ its environment. Four different virtualization techniques are used in products from Sun and its partners today (Figure 2):

- Hardware Partitioning creates multiple, secure, electrically-isolated domains on a single server platform. Sun’s Dynamic System Domains technology is available on mid-range and high-end UltraSPARC® processor-powered servers.
- Virtual Machines use software to create the illusion that each operating system running on the virtual machine has its own dedi-
cated hardware — despite the fact that each operating system only ‘owns’ a part of the hardware platform. VMware ESX Server is the virtual machine technology highlighted in this brief.

- **Containers** partition a single operating system instance to give each application the illusion that it has its own environment and its own dedicated set of resources. Solaris™ Containers is the partitioning technology highlighted in this brief.

- **Application Virtualization** refers to the fact that many applications support virtualized environments themselves. Most Web servers, for example, can host multiple virtual sites concurrently, each with their own root and resources such as Common Gateway Interface (CGI) scripts. Sun Java™ System Web server, for example, supports multiple virtual Web sites.

Virtualizing the Datacenter

For years, Sun has been developing technologies to help IT organizations reduce cost and complexity by enabling them to manage their resources as a single, centrally-managed, flexible, dynamically-allocated pool. This strategy helps datacenters reduce the number of systems they manage and increase utilization, helping them be more cost effective. It helps them to leverage the economics of scale of powerful, reliable servers, storage, and networking technologies — even for the smallest applications. And it helps IT organizations with the flexibility they need to align with their companies’ business objectives — and keep up with the rapid pace of change.

Virtualizing Layer by Layer

At each layer in the IT infrastructure, Sun helps virtualize resources, helping IT organizations increase reliability, resource utilization, flexibility, and security. Sun’s virtualization strategy extends to three key infrastructure layers: storage, servers, and the network:

- Many Sun StorEdge™ storage products support a centrally-located and managed pool of storage that can be securely partitioned and allocated to servers and applications on demand.
- For years, Sun’s high-end servers have supported Dynamic System Domains partitioning technology that allows IT organizations to treat their servers as a single pool of resources that can be allocated to a set of secure, electrically-isolated domains.
- The Sun Secure Application Switch — N2000 Series virtualizes the network, allowing IT organizations to allocate resources including hardware-accelerated TCP termination and re-assembly, packet-filtering, load-balancing, and SSL encryption to multiple, securely isolated virtual switches in order to support virtualized service switching.

Leading-Edge Technologies for Everyone

Sun has had a long-held philosophy of developing leading-edge technologies for its high-end products and pushing them down to mid-range and entry-level products over time. Nowhere is this philosophy more evident than in its server virtualization technologies. Sun first offered Dynamic System Domains only in its high-end servers, and now offers similar technologies in many of its mid-range offerings. Solaris Containers is a breakthrough technology that allows multiple virtual Solaris 10 OS environments to run on the same server, bringing high-end partitioning technologies single-processor servers, and across the range of platforms that Sun supports, from its potent UltraSPARC® processor-based products to its x64 servers with AMD Opteron processors.

Unprecedented Opportunity with Sun Fire x64 Servers

Sun’s x64 servers make Sun a “One-Stop Shop” for IT organizations needing to support multiple operating systems, and also for those wishing to consolidate multiple applications onto a smaller number of servers.

Sun Fire x64 Servers

Sun’s x64 server product line runs existing 32- and 64-bit operating systems and applications with blinding speed. Built around AMD Opteron processors and AMD DirectConnect Architecture, bandwidth between CPUs, memory, and I/O devices is increased and latency minimized — speeding both system and application performance. With up to four Single-Core or Dual-Core 800 Series CPUs, Sun x64 servers are an ideal platform to support application consolidation.

Beginning in summer 2005, Sun Fire V20z and V40z servers will be available with dual-core options, integrating two microprocessors on a single chip to double the performance of today’s single core systems (based on measuring V40z servers with single- and dual-core processors at the same clock rate).

Better yet, dual-core Sun Fire servers help reduce the complexity, operational cost, space, and power requirements faced by today’s IT
Improving Datacenter Efficiencies

A rack of Sun Fire V40z servers populated with AMD Dual-Core processors currently takes $18 percent less power than the Intel Xeon MP processor-based solution required to provide a similar number of CPU cores (based on manufacturer data sheets). In other words, customers using an Intel Xeon MP processor-based solution may be required to provide 2.4 times more power to match the CPU core equivalent of that delivered by a rack of Sun Fire V40z servers populated with AMD Dual-Core processors. Using a world-wide average energy price of 13 cents per kilowatt-hour, customers could experience an average savings of USD $1,658 in power and air conditioning with a single V40z server containing four dual-core processors.

Sun Fire V40z Server

The Sun Fire V40z Server (Figure 3) is a 3U system that hosts 2 or 4 AMD Opteron 800 Series processors, up to 6 Ultra 320 SCSI disk drives. The server includes two Gigabit Ethernet ports, and includes out-of-band lights-out management capabilities facilitating remote datacenter deployment.

Sun Fire V20z Server

The Sun Fire V20z server (Figure 3) is a 1U system that hosts 1-2 AMD Opteron 200 Series processors, up to 16 GB of memory, and up to 2 Ultra 320 SCSI disk drives. The server includes two Gigabit Ethernet ports, and includes out-of-band lights-out management capabilities facilitating remote datacenter deployment.

These hardware capabilities can be complemented with Sun software technologies to improve availability even further. Part of Sun Java™ Enterprise System, Sun Java™ System Clusters support multi-node clusters.

One-Stop Shop

With the option to run Solaris, Linux, or Microsoft Windows on Sun x64 servers, IT organizations have the flexibility to use one vendor to meet a wide variety of requirements. They can purchase one set of servers and storage, deploy them for one purpose today, and redeploy the same hardware with a different operating system choice the moment their needs change.

Ideal Consolidation Platform

Sun’s x64 servers are the ideal platform for application consolidation. Because Solaris, Linux, Windows, and ESX Server all run on x64 processors in native mode, applications can run at full processor speed, without the need for time-consuming processor-set emulation. With three operating system choices, customers have the greatest flexibility and investment protection. Of the virtualization and partitioning technologies discussed on page 2, two stand out as best-of-breed technologies for use with Sun x64 servers: Solaris Containers and VMware ESX Server.

Partitioning the Operating System with Solaris Containers

Solaris Containers combine operating system partitioning with fine-grained resource controls to allow servers to be partitioned at sub-CPU granularity without having to replicate the operating system image itself (Figure 4). Solaris Containers provide a virtualized Solaris 10 Operating System image including a unique root file system, a shared read-only set of system executables and libraries, and whatever resources the root administrator assigns to the container at creation time. Solaris containers can be booted and shut down just like any instance of the Solaris 10 OS, and rebooted in seconds if the need arises. Unlike virtual machines, which must interpret every single interrupt and allocate it to the right instance, Solaris Containers support main-frame-level partitioning capabilities with almost zero overhead.

Operating System Partitioning

Solaris Containers provide a set of up to 8192 virtualized environments per Solaris 10 OS instance, each container appearing to users, administrators, and applications as independent, isolated systems. A global administrator can create containers, allocate resources to them, and boot them as if they were an operating system instance. Once booted, Solaris Containers provide a secure sandbox that includes:

- A virtual platform containing a unique root, shared user, and other administrator-configured file systems — plus network interfaces, inter-process communication objects, con-
sole devices, and sub-container resource management facilities;
- System identity settings including host name, time zone, RPC domain, and locale;
- Secure isolation from other containers enforced by the kernel and capable of preventing a process within a container, even if compromised, from escalating privileges to compromise another container;
- Fault isolation that restricts the propagation of software faults to a single container. If an error does cause a container to fail, it can reboot in only a few seconds because the single operating system instance running on the server remains intact.

A Solaris Container hosting a Web server might be allocated an IP address with rights to bind to port 80, and a disk device containing a file system for the Web site content. The Web server cannot see any resources not allocated to its container. If the Web server fails, or its security is penetrated by an intruder, it cannot affect other containers or the applications running in them.

Fine-Grained Resource Control
Solaris Resource Manager software gives administrators almost unlimited flexibility to assign and isolate resources to specific containers. In many cases. Resource Manager can be used to allocate resources to multiple applications within a single container. Across multiple containers, Dynamic Resource Pooling allows administrators to allocate discrete pools of resources such as CPUs to specific containers. Administrators can dynamically change the content of resource pools manually or automatically on a rule basis. For example, an additional CPU can automatically be added to a container when its utilization exceeds 80 percent — and all without rebooting.

The Fair share Scheduler supports dynamic resource allocation, allowing proportions of resources — such as fractions of a CPU — to be allocated to containers. When resources like CPUs and memory are dynamically allocated, resource-capping controls can be used to set limits on the amount of resources consumed by specific containers. Finally, Solaris IP Quality-of-Service can be used to manage network bandwidth used by multiple containers, helping administrators to maintain specified QoS levels in a consolidated environment.

Figure 5: Each virtual machine supported by VMware ESX Server software supports an idealized hardware environment, including CPUs, memory, disk, and even BIOS.

Virtualizing the Hardware with VMware ESX Server
VMware ESX Server is virtual infrastructure software for partitioning, consolidating, and managing systems in mission-critical environments. ESX Server and VMware Virtual Infrastructure Nodes provide a highly-scalable virtual machine platform with advanced resource management capabilities, all which can be managed by VMware VirtualCenter. Rather than virtualizing an operating system instance, it works one layer lower, providing a layer of abstraction between the server hardware and the software that runs on it (Figure 5). This allows ESX Server to support a different class of consolidation requirements than Solaris Containers — namely support for applications requiring kernel-level isolation and supporting multiple operating systems on the same server. By virtualizing the hardware, a single system running ESX Server can support a heterogeneous environment including multiple instances and different versions of Linux, FreeBSD, Novell Netware, and Microsoft Windows. The ESX Server architecture implements abstractions that allow hardware resources to be allocated to multiple workloads in fully-isolated environments.

Idealized Hardware Platform
VMware ESX Server runs directly on Sun Fire x64 servers to provide a secure, uniform platform for deploying, managing, and remotely controlling multiple operating system instances. Hardware interfaces, such as device drivers, enable hardware-specific service delivery while hiding hardware differences from other parts of the system. The VMware virtualization layer provides an idealized hardware environment and virtualizes underlying physical resources. By presenting a standard x86-architecture hardware platform to guest operating systems, ESX Server makes it easy to move virtual environments from machine to machine without having to exactly match CPUs, disk drivers, and network interfaces. Each virtual platform consists of idealized CPUs, memory, disk and network interfaces. Each virtual environment has its own CPU or CPUs, with virtualization of the 32-bit x86 architecture complete down to the registers, translation lookaside buffer, and other control structures. Most instructions are directly exe-
Consolidation is the goal. Virtualization and partitioning are the means.

the OS. Each disk device is implemented with a flat file, the format of which is the same regardless of what type of device it actually resides on, including SCSI, RAID, and Fibre Channel adapters. ESX Server can support up to four virtual network cards within each virtual machine, each of which has its own MAC address and one or more IP addresses. A virtual switch mechanism allows administrators to configure when to pass network traffic from one VM instance to another, and when it exits the server to a physical switch.

Granular Resource Management
The resource manager in ESX Server uses a proportional share mechanism to allocate CPU, memory, and disk resources across multiple virtual machines. Network bandwidth is controlled with network traffic shaping. Minimum and maximum percentages of a single physical CPU's processing power can be specified for each virtual machine. ESX Server also allows CPU shares and restricting a virtual machine to run on a certain set of physical CPUs (CPU scheduling affinity). Similarly, administrators may specify minimum and maximum memory sizes, as well as memory shares, for each virtual machine.

Guest Operating System Choice
One of the benefits of virtualizing an entire hardware platform is that different guest operating systems and different versions of each operating system can co-exist on the same platform, giving IT organizations a flexible range of consolidation options. In the ESX Server architecture, guest operating systems interact only with the standard x86-compatible virtual hardware presented by the virtualization layer. This provides the capability for ESX Server to support any x86-compatible operating system. In practice, however, ESX Server supports a subset of x86-compatible operating systems that are tested throughout the product development cycle. VMware documents the installation and operation of these guest operating systems and trains its technical personnel in their support.

The list of supported guest operating systems is available at http://www.vmware.com/pdf/esx_systems_guide.pdf and includes multiple versions of Red Hat Linux, SuSE Linux, FreeBSD, Novell Netware, and Microsoft Windows operating systems.

Consolidation through Virtualization and Partitioning
Virtualization with VMware ESX Server and partitioning with Solaris Containers gives Sun customers a flexible set of choices for consolidating multiple applications onto a single server. Putting these technologies to work in an IT environment opens up a whole new realm of possibilities.
spam filtering suite can be installed into separate environments so that if an intruder is successful in breaking one component’s security, they no longer have access to all three.

Development, Staging, and Production
With virtualization and partitioning technologies, IT organizations can deploy development, test, staging, and production versions of an application onto the same server. Each developer can work in their own personal environment. Once an application has been tested and readied for deployment, it can be installed into a virtualized environment for staging. When the new application is deployed, it’s a matter of changing IP address and resource allocation — and the staging environment becomes the production one. Using this approach reduces the number of resources that an IT organization must support, and it provides an automatic fallback mechanism in the event that a new version must be rolled back to the previous one.

<table>
<thead>
<tr>
<th>If you have...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple applications running on the Solaris 10 OS</td>
<td>Consolidate using Solaris Containers</td>
</tr>
<tr>
<td>Multiple open-source applications</td>
<td>Run each application in its own Solaris Container</td>
</tr>
<tr>
<td>Mixture of Linux and Solaris applications</td>
<td>Migrate Linux applications to Solaris and consolidate using Solaris containers or Consolidate onto two servers, one hosting multiple Solaris applications in Solaris Containers, the other one hosting multiple Linux applications in ESX Server virtual machines</td>
</tr>
<tr>
<td>A set of Linux and/or Microsoft Windows applications</td>
<td>Consolidate onto a single server using ESX Server</td>
</tr>
<tr>
<td>or Applications running on multiple versions of Linux and/or Microsoft Windows</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Consolidation and Virtualization Guidelines

Legacy Application Consolidation
Sometimes a set of applications running on old or multiple operating system versions need a performance boost that can be accomplished by re-hosting onto a faster server. Using virtual machine technology, these applications can be consolidated onto high-performance x64 servers and receive the needed performance boost. Host each operating system and application instance in its own separate virtual machine, assign an x64 processor to each VM, and watch performance soar.

Geographic Replication, Disaster Recovery
Deploying applications into containers or virtual machines makes it easy to package and re-deploy them anywhere around the globe for both geographic replication and disaster recovery purposes. Both Solaris Containers and VMware ESX Server facilitate backing up and restoring virtual environments. In both cases, two sets of data are stored: the configuration settings for the container or virtual machine environment, and an archive of the environment’s data itself. Given the same version of the Solaris 10 OS or VMware ESX Server on another system in another datacenter, it’s straightforward to re-constitute a previously-saved environment.

Shared Hosting Environments
Internet Service Providers can offer customers their own complete Web hosting environment, giving them control over Web server software and even administrator passwords. Using Solaris Containers or VMware ESX Server, ISPs can offer dedicated hosting with the efficiency of a shared hosting infrastructure.

Consolidation Guidelines
At a high level, the choices for an IT organization wishing to consolidate multiple applications onto a single powerful Sun Fire x64 server are straightforward (Table 1):

- To consolidate multiple applications running on the Solaris 10 OS, use Solaris Containers.
- To consolidate applications running on Linux and/or Microsoft Windows, use ESX Server.

At a deeper level, consolidation offers IT organizations the opportunity to simplify their environment by limiting the number of platforms they support.

Migrating While Consolidating
IT organizations can cut cost and complexity by migrating applications to a smaller number of platforms, giving them greater choice when consolidating. Consider:

- Migrating Linux applications to the Solaris 10 OS allows IT organizations to consolidate applications running on both systems into Solaris Containers environments. Many open source applications that run on Linux also come packaged with the Solaris Operating System. These applications can be used out-of-the-box in one or more Solaris Containers. Other Linux applications can be re-compiled using the Linux libraries that are included with the Solaris 10 OS.
Many server functions supported in Microsoft Windows have open source and commercial alternatives that run on the Linux and Solaris Operating Systems. Through migration, IT organizations can reduce the number of platforms and help to reduce licensing costs. For example, Microsoft Exchange Server functions can be supported with open source sendmail open source calendaring packages, and also with Sun Java Enterprise System software. Web applications running on Microsoft Internet Information Service (IIS) can be ported to run on open source Apache or Sun Java System Web Server. Those that use Active Server Pages in Microsoft IIS can take advantage of Sun Java™ System Active Server Pages. (Currently, not all Sun Java Enterprise System products can be installed in Solaris Containers.)

Consolidating using Solaris Containers
For IT organizations wishing to consolidate multiple applications running on the Solaris 10 OS, multiple open-source applications, Linux applications ported to the Solaris OS, or any combination of the above, Solaris Containers is the consolidation technology of choice.

IT organizations consolidating using Solaris Containers accrue all of the benefits of using the Solaris Operating System. Solaris Containers are a low-overhead partitioning approach, and the technology is included with the Solaris 10 OS at no extra cost. With feature parity across platforms, Solaris Containers can be used on Sun Fire servers regardless of the underlying processor architecture.

Consolidating using VMware ESX Server
When an IT organization wishes to consolidate multiple Linux applications, multiple Microsoft Windows applications, or a combination of the two, ESX Server is the consolidation option of choice. Not only can its virtual machine technology support both operating systems, it can support multiple versions of each one as well.

IT organizations consolidating onto Sun x64 servers running ESX Server have the additional benefit of migration software that helps to package up an entire environment so that it can be installed in its own virtual machine.

Sun — the Ideal Consolidation Partner
For IT organizations attempting a nearly-impossible juggle of competing priorities, consolidating multiple applications onto a smaller number of more powerful servers is one that helps to reduce capital and operational costs, increase utilization, increase availability levels, and provide for continued operation through geographic replication.

When IT organizations look for the right platform to support their operations, there is no better partner than Sun. With a long history of pushing mainframe-quality features down the product line to its mid-range and entry-level servers, Solaris Containers is only one of many technologies that Sun can share with all of its customers, regardless of how many or how large of a server they purchase.

When it comes to platform choice, Sun Fire V20z and V40z servers offer the power of single- and dual-core processors with flexibility and investment protection. IT organizations wishing to deploy a dedicated operating system can choose between Solaris, Linux, and Microsoft Windows today, and re-deploy the same server with a different operating choice the moment their needs change. Those wishing to consolidate multiple applications running on multiple operating systems have the flexibility to run them unchanged in virtual machine environments or migrate open source and Solaris applications into Solaris Containers. Whichever choice an IT organization makes for consolidation through virtualization, the best choice is using Sun Fire x64 servers.

Learn More
To learn more about Sun Fire x64 servers, please visit sun.com/amd.

To learn more about Solaris Containers, visit sun.com/solaris.

To learn more about VMware ESX Server, visit www.vmware.com.

To learn how to put consolidation through virtualization to work for you, contact your Sun sales representative.